11/2/24, 1:31 AM Linux auditd for Threat Detection [Part 2] | by IzyKnows | Medium

Openinapp /1 C) Signin
Medium Q Search

Linux auditd for Threat Detection [Part 2]
Q IzyKnows - Follow
12 minread - Feb 10,2023
@ Listen [ﬁ Share

Part 1: Linux auditd for Threat Detection [Part 1]

Part 3: Linux auditd for Threat Detection [Final]

Early 2022 I wrote part 1 of this “series” which received such positive response that I
decided to do part 2.

Enjoy.

Recap & Introduction

In part 1, we had an introduction to auditd and the basics of rule writing. I
recommended some reading material and settings I've had success with in the past.
We covered MITRE’s most relevant data sources and which auditd rules would help

record them. Lastly, we covered some noise reduction tips and how you can get

auditd to work in large, diverse environments.

The most valuable takeaway from part 1 in my opinion was the rules <-> data source

mapping and recommended exclusions. In this part, the goal is

¢ to deep dive into an auditd log event

¢ to look at what fields are particularly interesting to us from an adversary

hunting perspective and

e some Splunk tips on log investigation

This post will be a light one and is really meant to be a preamble for part 3 which

will be posted shortly after this one. The content is ready and was initially planned

https://lizyknows.medium.com/linux-auditd-for-threat-hunting-part-2-c75500f591e8 117

11/2/24, 1:31 AM Linux auditd for Threat Detection [Part 2] | by IzyKnows | Medium
to be a part of this post until it became too long. Part 3 will be the most interesting

in my opinion so stay tuned :) </end of advertising>

Throughout this article, I'll be sharing my experience along with fabricated
scenarios within a monitored environment. It’s a simple VM running Linux ubuntu
4.15.0-142-generic 64bit.

With that, let’s get started.

Security in the Logs
I'd like to pick a behavior, execute it and then go into the logs to talk about what

different fields mean and which could potentially hold useful information for us.

I will focus on simple execution of a script using Python. The exact process that is
executed is not as important as understanding how the system logs the technique
itself. Much of what you'll see below is transferable knowledge to other behaviors
like file creation/modification/network events, etc. In this part, I will highlight only
1 technique (process/command execution) and explain the fields. In Part 3, I will

show you tests I ran for several other behaviors.
Command Execution

When a command is executed, execve is the syscall that executes the program. This
is a critical one from an adversary detection perspective. Take execution of the

following command

python badscript.py

The content of this script is irrelevant, it’s just a print command.

izy@ubuntu:~/Documents/testing$ cat badscript.py

print("bad")

https://lizyknows.medium.com/linux-auditd-for-threat-hunting-part-2-c75500f591e8 2/17

11/2/24, 1:31 AM Linux auditd for Threat Detection [Part 2] | by IzyKnows | Medium
Before execution, we setup auditd with two rules to monitor execve calls. Notice

how there’s none of the filtering applied from we talked about in part 1.

-a always,exit -F arch=b64 -S execve
-a always,exit -F arch=b32 -S execve

Upon execution, we see within the logs we have 6 different entries for this activity

598 items=2 pp) 8 id=180 =1088 fsuid=16 gid=1880 sgi
fsgid=1000 tty= ses 7295 comm="py " ax . y="T1659_1"

The behavior is one, but the record types are multiple. We see that in the case of
command execution, the path taken through the kernel triggers the record types
PROCTITLE, PATH, PATH, CWD, EXECVE and SYSCALL. Each of them with different
fields, some useful to us, some not. Knowing this is useful for hunting threats.

Let’s narrow into the events

type=PROCTITLE msg=audit(1675255174.901:30777): proctitle=707974686F6E006261647

type=PROCTITLE: The record type is said to give the complete command line that
triggered the audit event. It is however hex-encoded. If you use the ausearch utility
that comes with auditd with -i (for interpret), it will decode this for you. Splunk

users can use something like this

| eval cmd = urldecode(replace(encoded_data," ([0-9A-F]1{2})","%\1"))

https://lizyknows.medium.com/linux-auditd-for-threat-hunting-part-2-c75500f591e8 317

11/2/24, 1:31 AM Linux auditd for Threat Detection [Part 2] | by lzyKnows | Medium
Before we go into the event, I'd like to highlight that while PROCTITLE is said to give
complete command line, it is not always reliable. We’ll cover more about where it
cannot be relied on in part 3. There is a more reliable record type that we’ll explore
below.

The first field I want to cover is the ‘msg’ field. Every event within the audit.log

should have a msg field.
audit(1659896884.775:15237)

The msg field follows the format audit(time_stamp:10) . The time_stamp is in epoch
format. The ID however is interesting from an investigative perspective because all
audit events that are recorded from one application’s syscall have the same audit
event ID. A second syscall made by the same application will have a different event
ID. This way they are unique and you can use them for finding all activity related to
that syscall. However, if you have custom tagging on auditd rules (-k), I recommend
using ID + the tag to look for events as the ID field is not “truly” unique, i.e, I've seen

them overlap over longer periods of time.

You can use the following Splunk query to split the two with the following SPL (the
auditd TA won't do it for you).

| rex field=msg "audit\(\d+\.\d+: (2<id>[A\)]+)"
| rex field=msg "audit\((?<epoch>[A:]+)"
| eval log_time = strftime(epoch,"%Y-%m-%dT%H:%M:%S.%Q")

Adding that to a transform/macro for auditd events within your SIEM may be useful.

Moving on,

type=PATH msg=audit(1675255174.901:30777): item=1 name="/1ib64/1ld-1inux-x86-64.
type=PATH msg=audit(1675255174.901:30777): item=0 name="/usr/bin/python" -dinode=

tpye=PATH: This record type is said to contain the path that is passed as a
parameter to the syscall (execve in this case).

https://lizyknows.medium.com/linux-auditd-for-threat-hunting-part-2-c75500f591e8 4/17

11/2/24, 1:31 AM Linux auditd for Threat Detection [Part 2] | by IzyKnows | Medium

Let’s go down a quick rabbit hole here.

You'll often see PATH contain 1d.so (i.e., /lib64/l1d-linux-x86-64.s0.2) like above. This
often depends on the binary you execute. 1d.so is an argument often passed to
execve during execution of ELF files that require dynamically linked libraries. This
means the program running requires shared libraries to be located and linked at
run-time. Ld.so is a runtime linker and you should see which ELF binaries need
dynamically linked libraries by looking at their ELF program header. Here’s a nice

read if you're interested in ELF binaries: https://lwn.net/Articles/631631/

Take /bin/chmod (although it’s the same for /usr/bin/python). With readelf, you can

find out if 1d.so will be loaded at runtime like so

root@ubuntu:~# readelf -1 /bin/chmod

ELf file type is EXEC (Executable file)
Entry point 0x402680
There are 9 program headers, starting at offset 64

Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
PHDR Ox0000000000060040 0x000000000B400040 AxO000000C00400040
0x0000EE000ERRE1FE OX0000EA00ERE001FE R E 8

INTERP 0x0000000000000238 0x0000000000400238 0x0000000000400238
AxAAARARAAAAAAAAT - AxANAANAAAAAAAAAT- R 1

[Requesting program interpreter: /lib64/ld-linux-x86-64.s0.2]

LOAD (VAW IGIVIVIvIv IV IVIG]vIGIVIVIV]VIC)
0x000000000000c9bc Bx000000000000c9bc R E 200000
LOAD 0x000000000000celd OxOOOOEOOO0060celd OxO00000000060celd
0x00000000000004a4 Ox0000000000000698 RW 200000
DYNAMIC 0x000000000000ce28 Ox0000CO000060ce28 OxO00000DLDB60ce28
0x00000000000001d0 0x00000000000001d8 RW 8
NOTE 0x0000000000000254 Ox0000000000400254 O0x0000000000400254
0x0000000000000044 Ox0000000000000044 R 4
GNU_EH_FRAME 0x000000000000ad14 0x000000000040ad14 0x000000000040ad14
0x0000000000000474 0x0000000000000474 R 4
GNU_STACK 0x0000000000000000 Ox0OEOEEOO0COLEOEO OXO0000OCDEOOOOCOE0
0x0000000000000000 0x0000C0000000C0GO RW 10
GNU_RELRO Ox000000000000celd OxO0000EO000060celd OxO000000000060celd
0x00000000000001f0 Ox00000000000001FO R 1

So, it is normal to see ld.so being passed to execve, depending on the ELF binary
you're executing. Keep in mind most binaries today will dynamically load shared

libraries so you'll see it more often than not.

https://lizyknows.medium.com/linux-auditd-for-threat-hunting-part-2-c75500f591e8 5117

11/2/24, 1:31 AM Linux auditd for Threat Detection [Part 2] | by lzyKnows | Medium
Coming back, another useful bit of info for us in PATH is the mode because it
contains permissions of the file it refers to. In this case, you will notice
mode=0100755 which translates to ‘file,755. 755’ (rwxr-xr-x) being the permission of
the object, in this case, 1lib64/1d-linux-x86-64.s0.2 and /usr/bin/python. This could be
important for PATH may contain a suspicious file that’s attempting execution.

type=CWD msg=audit(1675255174.901:30777): cwd="/home/izy/Documents/testing"

type=CWD: This record type holds the current working directory (hence, CWD)
from where the process which invoked the syscall (execve in our case) was executed.
The process which invoked the syscall in our case is /usr/bin/python2.7 which was
executed in the above mentioned directory. It’s worth noting how PATH and CWD
record different things and hence is capable of telling us different stories. In our
example we see the two hold similar-ish values but this may not always be the case

and we’ll see some examples of that in part 3.

type=EXECVE msg=audit(1675255174.901:30777): argc=2 a0="python" al="badscript.g

type=EXECVE: This is the most interesting one because it contains the command

line and one that should be trusted over PROCTITLE. I should however mention

that there are very few cases where execve does not include the entire command line

and PROCTITLE can prove to be more accurate. We'll look at a few of those

examples in part 3 but for the most part, execve can be trusted for entire command

line. Each argument in the command line will be a separate field starting from ‘a0’
* ¢

to ‘a¥. ‘a0’ will always be the binary performing the execution, in this case, python.

Every ‘@’ field thereafter will be command line parameters passed to a0.

If you're consuming these logs in a SIEM, the annoying part is you need to build up
the command line yourself from the various arguments (the Splunk TA won't do this
either). With Splunk, you can use a foreach statement to iterate through all a*
variables in an event and build the command line. The exact SPL is left as reader’s

exercise :)

https://lizyknows.medium.com/linux-auditd-for-threat-hunting-part-2-c75500f591e8 6/17

11/2/24, 1:31 AM Linux auditd for Threat Detection [Part 2] | by IzyKnows | Medium

type=SYSCALL msg=audit(1675255174.901:30777): arch=c000003e syscall=59 success=

type=SYSCALL: This is a rich one too, with much meta-info to understand the event
better. This event essentially tells us that the execve syscall was invoked successfully
via 64-bit python process, the process and parent process ID and that the user with
uid 1000 (izy) has performed this action under it’s own user context. That’s a lot of

rich info, but how does this event tell us that?
pid, ppid, comm, exe: fairly straightforward fields, I won't go into them

auid: This refers to the audit user ID. This ID is assigned to a user upon login and is
inherited by every process even when the user’s identity changes. This field is useful
to trace events when a user switches user contexts but you still want to know what
they did. For example, if a user logs into a machine and thereafter escalates
privileges to the root user (sudo su), the auid for the events will stay the same before
and after escalation. It’s worth noting that you may notice this value as ‘4294967295’

in some cases. This is discussed in part 1 and is equivalent to ‘unset’.

success=yes: The syscall returned a successful state, i.e. the process successfully

executed
arch=c000003e : Hex representation for x86_64 (64bit)

syscall=59: This is the ID of the syscall that was invoked. 59 is for “execve”. I've
found this table helpful for such resolution. Additionally, you can use the ausyscall
--dump utility to see the syscall. Splunkers could possibly add the above table to a

lookup list for search-time enrichment.

All the *id fields tell us about the user, which group they’re in, whether it was
executed by the current session user or under the context of another user and also
whether the suid bit was set for the exe in question. These are POSIX terms which I
won't go into explaining but it’s worth understanding them. If you want to

understand them at depth, I'd look at the man pages.

As a quick reference for the different audit field events, I can recommend this nice
table: https://access.redhat.com/articles/4409591

https://lizyknows.medium.com/linux-auditd-for-threat-hunting-part-2-c75500f591e8 717

11/2/24, 1:31 AM Linux auditd for Threat Detection [Part 2] | by IzyKnows | Medium
The a* fields within this record type are the invocation of the execve syscall itself (in

hex), which has the syntax

int execve(const char *pathname, char xconst argv[],
char *const envp[]);

It’s worth noting the values of these arguments are hex-encoded although I did not
dig deep enough to be able to meaningfully interpret these fields. If someone knows
more about how one can easily interpret command line arguments passed to the

syscall via this audit log event, I'd be happy to add it in.

Another useful trick, if you have endpoint access, and want to look at a wonderfully
parsed version of an audit event, you can use the ausearch -i to do a lot of the
parsing for you. Look at the difference -i makes. Everything (almost) we wish our
Splunk TA would do

7 11:28:84 2022
msg=audit(1659896884 . 775:15237): cwd="/homeSf LLv,r[mcum-u-nt ftes
CVE msg=audlt(1659896884 .775:15237): argc=2
CALL msg=audit(1659896884.775:15237): arch= caﬂﬁm?# ~'-.r-'—u!_'l. 59 success=yes exit=0 ab=c3BdeE al=c3BdcB aZ=
c1eBB8 a3=598 items=2 ppid= ._113:’_ pid=21195 :uv:l 4294967295 uld=0 gid=0 euild=0 suid=8 fsuid=g egid=0 sgid=8 fsgid=
B tty=ptsd 5e5=4294967295 comm="python" exe="/usrfbinfpythonz.7" key="T1548.08081 1"
fﬂutl.dl.lhlil'ltl] fhome/izy/Documents/testing# ausearch -i -a 15237

Pype CHD nsg audit(eg ey 11 28:84, "'?5 15"""' H c'ﬁd_,’hnm v (Documentsftesting
v : argc= python ai=ba ipt.py
:4:4 "?= 152 :?J : arch 6 64 syscall=execve success=yes exit=@ uﬂ i] Erj-"lE
.JdL‘ a2=Bxcledbs 98 items=2 ppld=21182 pid=21195 auid=unset uld=root gld=root euwid [
suld=root egid=root sgid=root fsgid=root tty=pts4 ses=unset comm=python exe=fusrbinfpythonz.7 ke.=T154s.ﬂE-1_1

While on the topic of other ways to parse auditd logs, here’s an interesting

visualization tool from Steve Grubb: https://github.com/stevegrubb/audit-explorer/

Side-note: Scaling Security Agents
I forgot to mention this point in the last part hence it’s here as a quick side-note. I'll

move this to part 1 thereafter since it’s better suited there.

My focus with this article series is security at scale. So while there may be “better”
ways of doing something, our definitions of “better” may vary. I'm looking into

reasonable security that can scale.

https://lizyknows.medium.com/linux-auditd-for-threat-hunting-part-2-c75500f591e8 8/17

11/2/24, 1:31 AM Linux auditd for Threat Detection [Part 2] | by IzyKnows | Medium
We're security guys, not operations experts. In an ideal world, you'd partner with a
central operation teams in your environment to collaboratively roll out agents in a
responsible way. That was hardly the case in my scenario and had me fall into

several operational bad practices during deployment that I hope to help you avoid.

I've seen auditd (and other agents) being used at large scales (Over 100,000 servers)
and working fine. I won't lie, this doesn’t come easy. Auditd, like every other security
tool, needs care and constant tuning, there is no one configuration that will work in
all environments. An added consideration is that with auditd, you’re responsible for
debugging issues and can’t point to a vendor to fix. On the flip side, you have
superior control of how the tech works, which in my opinion is better than a
blackbox EDR vendor “fixing” the issue. Both approaches have pros and cons, you
need to decide which works better for your goals and budget. With auditd, whats key
is to know your environment and, hopefully with this series, know how auditd can

give you the most.

When deploying auditd (or any security agent), It’s often a good idea to deploy in
phases/rings. If you build an auditd rule set that works perfectly in your lab and
deploy it across a productive environment, prepare to fail almost instantly. There is
no magic configuration that will work everywhere, make sure you set your
stakeholder expectations right about that fact. You want to divide your environment
into testing “rings” consisting of endpoints of preferably similar function. The level
of granularity you want to go to define rings of “similar function” is based on the
time/effort you can invest, but the underlying logic is the same. For example, your
user endpoint devices in one ring, database servers in another, web servers in
another, and so on. You could further increase granularity with say, a ring for
developer endpoints since you know they often run all kinds of binaries, compared

to those not working so close to technology.

The logic is: endpoints of similar nature will probably portray similar kind of
processes/activity and are your best shot at testing your rule set against diverse, but
manageable representations of your environments. Let me give you an example. In
an environment I worked in, I realized that while my auditd rule set worked quite
well overall, there were a particular bunch of systems that were just overflowing
with logs and was causing issues, both on the endpoint (performance) and SIEM
side (space). On digging deeper, we found it was a set of web servers that were
constantly opening and closing network connections. This was their normal

behavior. As a result, the number of events being generated by monitoring the

https://lizyknows.medium.com/linux-auditd-for-threat-hunting-part-2-c75500f591e8 9/17

11/2/24, 1:31 AM Linux auditd for Threat Detection [Part 2] | by IzyKnows | Medium
‘connect’ syscall were through the roof. The good thing is that if you find the
“offending” log event, you can use -F to tune out such events within the .rules file.
Keep in mind the field types you're allowed to use with -F. Remember, rules are
matched in a top to down order, so ensure you put your highest confidence
exclusions on top. Also know that you can have multiple .rules files within
/etc/audit/rules.d/*.rules. You can use this to your advantage and store environment
specific exclusions in a separate rule file for better maintainability. This is discussed

more in part 1.

Conclusion

Record types like PROCTITLE, PATH, CWD, SYSCALL — they are common and you’'ll
see them recurring throughout audit.log, regardless of the activity you're executing.
So understanding what these record types tell us is the basis for understanding how
to read auditd logs and transferable to other behaviors too. This helps with the

decision of whether a record type is useful for you or not.

With the above, you should have the information you need to understand/hunt
through other audit events as well. The intention of part 2 was to pick a particular
behavior (process execution) and talk about what auditd is capable of telling you
about it with no filtering.

With this knowledge, in part 3, we’ll go into what the logs look like for simulations

that cover all applicable MITRE data sources. I will not go into each in detail the way

I did here but rather share the results and noteworthy observations where

applicable. Additionally, I'll share raw & enriched log samples for each.

Lastly, a special thanks to those who reviewed this article and gave valuable

feedback. It’s a fairly long list but you know who you are :)

Reading Material

Lastly, here are some related readings I enjoyed.

7.6. Understanding Audit Log Files Red Hat Enterprise Linux 7 |
Red Hat Customer Portal

By default, the Audit system stores log entries in the
/var/log/audit/audit.log file; if log rotation is enabled...

https://lizyknows.medium.com/linux-auditd-for-threat-hunting-part-2-c75500f591e8 10/17

